如何在ubuntu.播放mp4影片 取得連結 Facebook X Pinterest 以電子郵件傳送 其他應用程式 - 11月 20, 2019 sudo apt-get install ubuntu-restricted-extras 取得連結 Facebook X Pinterest 以電子郵件傳送 其他應用程式 留言
使用DLIB函式庫達成即時人臉辨識功能 - 10月 18, 2020 1. 研究動機 在大二上學期時,想要做出一個人臉門禁系統,在網路搜尋時,搜尋到 Dlib 這個函式庫,他提供了眾多的預訓練模型, 本作品使用 Dlib 函式庫搭配 tkinter 套件製作 GUI ,並且用到了本課程教的陣列運算,達成即時人臉辨識的功能。 2. 研究步驟 2.1 系統流程圖 圖一 系統流程圖 2.2 獲得人臉位置 在一張圖像中,我們要先辨識圖片中的人臉及其位置,在 Dlib 函式庫中,是以 CNN 的方法來獲得人臉的位置, Dlib 提供了已經訓練好的模型,在程式中只要使用 dlib.cnn_face_detection_model_v1 函式即可使用此模型,在該步驟中,此函式可以回傳檢測到人臉的數量以及座標。 圖二 獲得人臉位置功能圖例 2.3 獲得人臉關鍵點 在獲得人臉的數量以及座標之後,由於人臉有許多的器官,例如鼻子、眉毛等等, Dlib 規範了 68 個人臉的關鍵點,使用 dlib.shape_predictor 函式可以得到人臉 68 點關鍵點的座標,以更好的辨識人臉。 圖三 獲得人臉關鍵點 功能圖例 2.4 獲得人臉特徵向量 在人臉辨識中,最後需要將所辨識到的人臉轉成特徵向量,才可以快速地比較,如果是將人臉以圖像的方式比對,將會耗費很多的資源,在 Dlib 中作者提供了使用 29 層 ResNet 訓練而成的模型,在輸入了圖片以及關鍵點後 dlib.face_recognition_model_v1 這個函示會輸出 128 維的特徵向量,用來跟資料庫的特徵向量做比對。 圖四 獲得人臉特徵向量 功能圖例 2.5 比對相似人臉 獲得人臉特徵相量後,必須與資料庫的特徵向量比對,比對方法為先將人臉特徵向量減去資料庫的向量再取歐式距離,擁有最小歐式距離並且歐式距離小於自訂閾值的人臉標籤即是系統辨識出之人臉。 3. 實驗結果 在 GTX1050 顯示卡運算下,在 640x480 的尺寸中,將 1 幀畫面辨識出其中人臉,耗時僅 0.1 秒,是可以達到串流功能的,以下是靜態的執行畫面。 圖五程式執行畫面 、 程式動態影片 (google 雲端 ) 4. 結論 Dlib 中,使用 CNN 作為人臉偵測的方法, CNN 的方法雖然精度很高,但是需要的運算效能非常多,在像是樹梅派 嵌入式系統,是不能達... 閱讀完整內容
以dlib實現人臉辨識打卡系統 - 1月 13, 2020 一、 功能 在上班族上班的一天,打卡是非常重要的,打卡系統的存在是讓雇主知道員工的上下班時間,但是打卡鐘也是需要員工手動的把卡片放入打卡鐘裡面,有了人臉辨識打卡系統,打卡鐘跟每天打卡的這個動作就是多餘的了。 這個打卡系統基於 python 跟 dlib 組成,只需要人臉被辨識,就會記錄下時間以及在資料庫尋找人名,完全不需要按鍵的觸發或是編號,因為人臉就是編號。 閱讀完整內容
使用Python達成影像形態學處理(不使用Opencv函式庫) - 10月 18, 2020 1. 研究動機 在進入專題實驗室時,觀看 DeltaMOOCx 的線上課程,看到形態學的操作,覺得使用函式可以快速的達成功能,但是我不禁思考如果不使用函式,自己是否可以完成,本研究使用 opencv 的 cv2.getStructuringElement() 、 cv2.erode() 、 cv2.dilate() 、 cv2.morphologyEx() 函式當作對照組與不使用函式之結果進行比較。 2. 研究步驟 2.1 結構元素 (Structures Element) 結構元素為型態學的必備元素,結構元素的大小可以使用者自訂, opencv 函式中可以自訂為交叉 、 長方形 、 橢圓形 ,本研究對照組的 opencv 函式中使用的結構元素為 3x3 的交叉區塊,因此不使用 opencv 函式的實驗組的結構元素也為 3x3 的交叉區塊。 2.2 膨脹 (Dilation) 膨脹操作是將結構元素逐個像素的由上而下 、由左至右的掃描,假如結構元素的原點與被掃描圖像該點像素值相同,則將整個結構元素覆蓋至該圖像。 圖一 形態學膨脹操作 2.3 侵蝕 (Erosion) 侵蝕操作是將結構元素逐個像素的由上而下 、由左至右的掃描,假如整個結構元素與被掃描圖像像素值相同,則將結構元素的原點覆蓋至該圖像。 圖二 形態學侵蝕操作 2.4 斷開 (Open) 先侵蝕,接著再膨脹。 圖三 形態學斷開操作 2.5 閉合 (Close) 先膨脹,接著再侵蝕。 圖四 形態學閉合操作 3. 實驗結果 以下是實驗組與對照組的結果表格 : 4. 結論 經過了形態學的練習,不管事程式亦或是觀念都有一定的提升,我覺得可以把結構元素跟 圖像做捲積,再做加減運算,或許可以達成更快的速度。線上課程中,還有教到濾波,邊緣偵測等影像處理的方法,也是日後挑戰的題目。 閱讀完整內容
留言
張貼留言